Copied to
clipboard

G = C336D8order 432 = 24·33

3rd semidirect product of C33 and D8 acting via D8/C4=C22

metabelian, supersoluble, monomial

Aliases: C336D8, C12.25S32, (C3×D12)⋊2S3, C12⋊S38S3, D122(C3⋊S3), C337C81C2, (C3×C12).112D6, (C32×D12)⋊3C2, C32(C322D8), C32(C327D8), (C32×C6).29D4, C3211(D4⋊S3), C2.4(C336D4), C6.8(C327D4), C6.20(D6⋊S3), (C32×C12).8C22, C12.9(C2×C3⋊S3), C4.15(S3×C3⋊S3), (C3×C12⋊S3)⋊2C2, (C3×C6).86(C3⋊D4), SmallGroup(432,436)

Series: Derived Chief Lower central Upper central

C1C32×C12 — C336D8
C1C3C32C33C32×C6C32×C12C32×D12 — C336D8
C33C32×C6C32×C12 — C336D8
C1C2C4

Generators and relations for C336D8
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=a-1, ae=ea, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 832 in 164 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, C8, D4, C32, C32, C32, C12, C12, C12, D6, C2×C6, D8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, D12, D12, C3×D4, C33, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C62, D4⋊S3, S3×C32, C3×C3⋊S3, C32×C6, C324C8, C3×D12, C3×D12, C12⋊S3, D4×C32, C32×C12, S3×C3×C6, C6×C3⋊S3, C322D8, C327D8, C337C8, C32×D12, C3×C12⋊S3, C336D8
Quotients: C1, C2, C22, S3, D4, D6, D8, C3⋊S3, C3⋊D4, S32, C2×C3⋊S3, D4⋊S3, D6⋊S3, C327D4, S3×C3⋊S3, C322D8, C327D8, C336D4, C336D8

Smallest permutation representation of C336D8
On 144 points
Generators in S144
(1 45 15)(2 16 46)(3 47 9)(4 10 48)(5 41 11)(6 12 42)(7 43 13)(8 14 44)(17 28 121)(18 122 29)(19 30 123)(20 124 31)(21 32 125)(22 126 25)(23 26 127)(24 128 27)(33 70 108)(34 109 71)(35 72 110)(36 111 65)(37 66 112)(38 105 67)(39 68 106)(40 107 69)(49 99 92)(50 93 100)(51 101 94)(52 95 102)(53 103 96)(54 89 104)(55 97 90)(56 91 98)(57 118 76)(58 77 119)(59 120 78)(60 79 113)(61 114 80)(62 73 115)(63 116 74)(64 75 117)(81 140 134)(82 135 141)(83 142 136)(84 129 143)(85 144 130)(86 131 137)(87 138 132)(88 133 139)
(1 60 29)(2 30 61)(3 62 31)(4 32 63)(5 64 25)(6 26 57)(7 58 27)(8 28 59)(9 115 124)(10 125 116)(11 117 126)(12 127 118)(13 119 128)(14 121 120)(15 113 122)(16 123 114)(17 78 44)(18 45 79)(19 80 46)(20 47 73)(21 74 48)(22 41 75)(23 76 42)(24 43 77)(33 56 131)(34 132 49)(35 50 133)(36 134 51)(37 52 135)(38 136 53)(39 54 129)(40 130 55)(65 140 94)(66 95 141)(67 142 96)(68 89 143)(69 144 90)(70 91 137)(71 138 92)(72 93 139)(81 101 111)(82 112 102)(83 103 105)(84 106 104)(85 97 107)(86 108 98)(87 99 109)(88 110 100)
(1 113 18)(2 19 114)(3 115 20)(4 21 116)(5 117 22)(6 23 118)(7 119 24)(8 17 120)(9 73 31)(10 32 74)(11 75 25)(12 26 76)(13 77 27)(14 28 78)(15 79 29)(16 30 80)(33 137 98)(34 99 138)(35 139 100)(36 101 140)(37 141 102)(38 103 142)(39 143 104)(40 97 144)(41 64 126)(42 127 57)(43 58 128)(44 121 59)(45 60 122)(46 123 61)(47 62 124)(48 125 63)(49 87 71)(50 72 88)(51 81 65)(52 66 82)(53 83 67)(54 68 84)(55 85 69)(56 70 86)(89 106 129)(90 130 107)(91 108 131)(92 132 109)(93 110 133)(94 134 111)(95 112 135)(96 136 105)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 65)(2 72)(3 71)(4 70)(5 69)(6 68)(7 67)(8 66)(9 109)(10 108)(11 107)(12 106)(13 105)(14 112)(15 111)(16 110)(17 52)(18 51)(19 50)(20 49)(21 56)(22 55)(23 54)(24 53)(25 90)(26 89)(27 96)(28 95)(29 94)(30 93)(31 92)(32 91)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 42)(40 41)(57 143)(58 142)(59 141)(60 140)(61 139)(62 138)(63 137)(64 144)(73 132)(74 131)(75 130)(76 129)(77 136)(78 135)(79 134)(80 133)(81 113)(82 120)(83 119)(84 118)(85 117)(86 116)(87 115)(88 114)(97 126)(98 125)(99 124)(100 123)(101 122)(102 121)(103 128)(104 127)

G:=sub<Sym(144)| (1,45,15)(2,16,46)(3,47,9)(4,10,48)(5,41,11)(6,12,42)(7,43,13)(8,14,44)(17,28,121)(18,122,29)(19,30,123)(20,124,31)(21,32,125)(22,126,25)(23,26,127)(24,128,27)(33,70,108)(34,109,71)(35,72,110)(36,111,65)(37,66,112)(38,105,67)(39,68,106)(40,107,69)(49,99,92)(50,93,100)(51,101,94)(52,95,102)(53,103,96)(54,89,104)(55,97,90)(56,91,98)(57,118,76)(58,77,119)(59,120,78)(60,79,113)(61,114,80)(62,73,115)(63,116,74)(64,75,117)(81,140,134)(82,135,141)(83,142,136)(84,129,143)(85,144,130)(86,131,137)(87,138,132)(88,133,139), (1,60,29)(2,30,61)(3,62,31)(4,32,63)(5,64,25)(6,26,57)(7,58,27)(8,28,59)(9,115,124)(10,125,116)(11,117,126)(12,127,118)(13,119,128)(14,121,120)(15,113,122)(16,123,114)(17,78,44)(18,45,79)(19,80,46)(20,47,73)(21,74,48)(22,41,75)(23,76,42)(24,43,77)(33,56,131)(34,132,49)(35,50,133)(36,134,51)(37,52,135)(38,136,53)(39,54,129)(40,130,55)(65,140,94)(66,95,141)(67,142,96)(68,89,143)(69,144,90)(70,91,137)(71,138,92)(72,93,139)(81,101,111)(82,112,102)(83,103,105)(84,106,104)(85,97,107)(86,108,98)(87,99,109)(88,110,100), (1,113,18)(2,19,114)(3,115,20)(4,21,116)(5,117,22)(6,23,118)(7,119,24)(8,17,120)(9,73,31)(10,32,74)(11,75,25)(12,26,76)(13,77,27)(14,28,78)(15,79,29)(16,30,80)(33,137,98)(34,99,138)(35,139,100)(36,101,140)(37,141,102)(38,103,142)(39,143,104)(40,97,144)(41,64,126)(42,127,57)(43,58,128)(44,121,59)(45,60,122)(46,123,61)(47,62,124)(48,125,63)(49,87,71)(50,72,88)(51,81,65)(52,66,82)(53,83,67)(54,68,84)(55,85,69)(56,70,86)(89,106,129)(90,130,107)(91,108,131)(92,132,109)(93,110,133)(94,134,111)(95,112,135)(96,136,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,65)(2,72)(3,71)(4,70)(5,69)(6,68)(7,67)(8,66)(9,109)(10,108)(11,107)(12,106)(13,105)(14,112)(15,111)(16,110)(17,52)(18,51)(19,50)(20,49)(21,56)(22,55)(23,54)(24,53)(25,90)(26,89)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(57,143)(58,142)(59,141)(60,140)(61,139)(62,138)(63,137)(64,144)(73,132)(74,131)(75,130)(76,129)(77,136)(78,135)(79,134)(80,133)(81,113)(82,120)(83,119)(84,118)(85,117)(86,116)(87,115)(88,114)(97,126)(98,125)(99,124)(100,123)(101,122)(102,121)(103,128)(104,127)>;

G:=Group( (1,45,15)(2,16,46)(3,47,9)(4,10,48)(5,41,11)(6,12,42)(7,43,13)(8,14,44)(17,28,121)(18,122,29)(19,30,123)(20,124,31)(21,32,125)(22,126,25)(23,26,127)(24,128,27)(33,70,108)(34,109,71)(35,72,110)(36,111,65)(37,66,112)(38,105,67)(39,68,106)(40,107,69)(49,99,92)(50,93,100)(51,101,94)(52,95,102)(53,103,96)(54,89,104)(55,97,90)(56,91,98)(57,118,76)(58,77,119)(59,120,78)(60,79,113)(61,114,80)(62,73,115)(63,116,74)(64,75,117)(81,140,134)(82,135,141)(83,142,136)(84,129,143)(85,144,130)(86,131,137)(87,138,132)(88,133,139), (1,60,29)(2,30,61)(3,62,31)(4,32,63)(5,64,25)(6,26,57)(7,58,27)(8,28,59)(9,115,124)(10,125,116)(11,117,126)(12,127,118)(13,119,128)(14,121,120)(15,113,122)(16,123,114)(17,78,44)(18,45,79)(19,80,46)(20,47,73)(21,74,48)(22,41,75)(23,76,42)(24,43,77)(33,56,131)(34,132,49)(35,50,133)(36,134,51)(37,52,135)(38,136,53)(39,54,129)(40,130,55)(65,140,94)(66,95,141)(67,142,96)(68,89,143)(69,144,90)(70,91,137)(71,138,92)(72,93,139)(81,101,111)(82,112,102)(83,103,105)(84,106,104)(85,97,107)(86,108,98)(87,99,109)(88,110,100), (1,113,18)(2,19,114)(3,115,20)(4,21,116)(5,117,22)(6,23,118)(7,119,24)(8,17,120)(9,73,31)(10,32,74)(11,75,25)(12,26,76)(13,77,27)(14,28,78)(15,79,29)(16,30,80)(33,137,98)(34,99,138)(35,139,100)(36,101,140)(37,141,102)(38,103,142)(39,143,104)(40,97,144)(41,64,126)(42,127,57)(43,58,128)(44,121,59)(45,60,122)(46,123,61)(47,62,124)(48,125,63)(49,87,71)(50,72,88)(51,81,65)(52,66,82)(53,83,67)(54,68,84)(55,85,69)(56,70,86)(89,106,129)(90,130,107)(91,108,131)(92,132,109)(93,110,133)(94,134,111)(95,112,135)(96,136,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,65)(2,72)(3,71)(4,70)(5,69)(6,68)(7,67)(8,66)(9,109)(10,108)(11,107)(12,106)(13,105)(14,112)(15,111)(16,110)(17,52)(18,51)(19,50)(20,49)(21,56)(22,55)(23,54)(24,53)(25,90)(26,89)(27,96)(28,95)(29,94)(30,93)(31,92)(32,91)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(57,143)(58,142)(59,141)(60,140)(61,139)(62,138)(63,137)(64,144)(73,132)(74,131)(75,130)(76,129)(77,136)(78,135)(79,134)(80,133)(81,113)(82,120)(83,119)(84,118)(85,117)(86,116)(87,115)(88,114)(97,126)(98,125)(99,124)(100,123)(101,122)(102,121)(103,128)(104,127) );

G=PermutationGroup([[(1,45,15),(2,16,46),(3,47,9),(4,10,48),(5,41,11),(6,12,42),(7,43,13),(8,14,44),(17,28,121),(18,122,29),(19,30,123),(20,124,31),(21,32,125),(22,126,25),(23,26,127),(24,128,27),(33,70,108),(34,109,71),(35,72,110),(36,111,65),(37,66,112),(38,105,67),(39,68,106),(40,107,69),(49,99,92),(50,93,100),(51,101,94),(52,95,102),(53,103,96),(54,89,104),(55,97,90),(56,91,98),(57,118,76),(58,77,119),(59,120,78),(60,79,113),(61,114,80),(62,73,115),(63,116,74),(64,75,117),(81,140,134),(82,135,141),(83,142,136),(84,129,143),(85,144,130),(86,131,137),(87,138,132),(88,133,139)], [(1,60,29),(2,30,61),(3,62,31),(4,32,63),(5,64,25),(6,26,57),(7,58,27),(8,28,59),(9,115,124),(10,125,116),(11,117,126),(12,127,118),(13,119,128),(14,121,120),(15,113,122),(16,123,114),(17,78,44),(18,45,79),(19,80,46),(20,47,73),(21,74,48),(22,41,75),(23,76,42),(24,43,77),(33,56,131),(34,132,49),(35,50,133),(36,134,51),(37,52,135),(38,136,53),(39,54,129),(40,130,55),(65,140,94),(66,95,141),(67,142,96),(68,89,143),(69,144,90),(70,91,137),(71,138,92),(72,93,139),(81,101,111),(82,112,102),(83,103,105),(84,106,104),(85,97,107),(86,108,98),(87,99,109),(88,110,100)], [(1,113,18),(2,19,114),(3,115,20),(4,21,116),(5,117,22),(6,23,118),(7,119,24),(8,17,120),(9,73,31),(10,32,74),(11,75,25),(12,26,76),(13,77,27),(14,28,78),(15,79,29),(16,30,80),(33,137,98),(34,99,138),(35,139,100),(36,101,140),(37,141,102),(38,103,142),(39,143,104),(40,97,144),(41,64,126),(42,127,57),(43,58,128),(44,121,59),(45,60,122),(46,123,61),(47,62,124),(48,125,63),(49,87,71),(50,72,88),(51,81,65),(52,66,82),(53,83,67),(54,68,84),(55,85,69),(56,70,86),(89,106,129),(90,130,107),(91,108,131),(92,132,109),(93,110,133),(94,134,111),(95,112,135),(96,136,105)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,65),(2,72),(3,71),(4,70),(5,69),(6,68),(7,67),(8,66),(9,109),(10,108),(11,107),(12,106),(13,105),(14,112),(15,111),(16,110),(17,52),(18,51),(19,50),(20,49),(21,56),(22,55),(23,54),(24,53),(25,90),(26,89),(27,96),(28,95),(29,94),(30,93),(31,92),(32,91),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,42),(40,41),(57,143),(58,142),(59,141),(60,140),(61,139),(62,138),(63,137),(64,144),(73,132),(74,131),(75,130),(76,129),(77,136),(78,135),(79,134),(80,133),(81,113),(82,120),(83,119),(84,118),(85,117),(86,116),(87,115),(88,114),(97,126),(98,125),(99,124),(100,123),(101,122),(102,121),(103,128),(104,127)]])

48 conjugacy classes

class 1 2A2B2C3A···3E3F3G3H3I 4 6A···6E6F6G6H6I6J···6Q6R6S8A8B12A···12M
order12223···3333346···666666···6668812···12
size1112362···2444422···2444412···12363654544···4

48 irreducible representations

dim11112222224444
type+++++++++++-
imageC1C2C2C2S3S3D4D6D8C3⋊D4S32D4⋊S3D6⋊S3C322D8
kernelC336D8C337C8C32×D12C3×C12⋊S3C3×D12C12⋊S3C32×C6C3×C12C33C3×C6C12C32C6C3
# reps111141152104548

Matrix representation of C336D8 in GL8(𝔽73)

10000000
01000000
000720000
001720000
000007200
000017200
00000010
00000001
,
10000000
01000000
000720000
001720000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00001000
00000100
0000007272
00000010
,
025000000
3532000000
0029190000
0048440000
00000100
00001000
00000010
0000007272
,
6235000000
711000000
00100000
00010000
000072000
000007200
00000010
0000007272

G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[0,35,0,0,0,0,0,0,25,32,0,0,0,0,0,0,0,0,29,48,0,0,0,0,0,0,19,44,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72],[62,7,0,0,0,0,0,0,35,11,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72] >;

C336D8 in GAP, Magma, Sage, TeX

C_3^3\rtimes_6D_8
% in TeX

G:=Group("C3^3:6D8");
// GroupNames label

G:=SmallGroup(432,436);
// by ID

G=gap.SmallGroup(432,436);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,254,135,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽